首页 > 个人文档 > 毕业论文 > 论文范文 > 抗震设防论文【最新5篇】正文

抗震设防论文【最新5篇】

时间:2024-02-12 17:55:15

读书破万卷,下笔如有神,下面是编辑给大家收集的抗震设防论文【最新5篇】,希望对大家有所启发。

抗震设防论文 篇1

关键词:结构设计抗震

一。抗震设计思路发展历程

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。

最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。

由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。

二。现代抗震设计思路及关系

在当前抗震理论下形成的现代抗震设计思路,其主要内容是:

1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。

2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。

现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。

60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于同一地面运动输入下的弹性反应最大位移。对于T在0.12-0.5秒之间的结构,适用“等能量法则”即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。当“等能量原则”适用时,随着R的增大,位移延性需求的增长速度比“等位移原则”下按与R相同的比例增长更快。由以上规律我们可以看出,如果以结构弹性反应为准,把结构用来做承载能力设计的地震作用取的越低,即R越大,则结构在与弹性反应时相同的地震作用下达到的非弹性位移就越大,位移延性需求就越高。这意味着结构必须具有更高的塑性变形能力。规律初步揭示出不同弹性周期的结构,当其弹塑性屈服水准取值大小不同时,在同一地面运动输入下屈服水准与所达到的最大非弹性位移之间的关系。也揭示出了延性能力和塑性耗能能力是屈服水准不高的结构在较大地震引起的非弹性动力反应中不致发生严重损坏和倒塌的主要原因。让人们认识到延性在抗震设计中的重要性。

之所以存在上诉的规律,我们应该注意到钢筋混凝土结构的一些相关特性。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力的属性。这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。在非弹性变形过程中,外力做功全部变为热能,并传入空气中耗散掉。我们可以进一步以单质点体系的无阻尼振动来分析,在弹性范围振动时,惯性力与弹性恢复力总处于动态平衡状态,体系能量在动能、势能间不停转换,但总量保持不变。如果某次振动过大,体系进入屈服后状态,则体系在平衡位置的动能将在最大位移处转化为弹性势能和塑性变形能两部分,其中,塑性变性能将耗散掉,从而减小了体系总的能量。由此我们可以想到,在地震往复作用下,结构在振动过程中,如果进入屈服后状态,将通过塑性变性能耗散掉部分地震输给结构的累积能量,从而减小地震反应。同时,实际结构存在的阻尼也会进一步耗散能量,减小地震反应。此外,结构进入非弹性状态后,其侧向刚度将明显小于弹性刚度,这将导致结构瞬时刚度的下降,自振周期加长,从而减小地震作用。

随着对规律认识的深入,这一规律已被各国规范所接受。在抗震设计时,对在同一烈度区的同一类结构,可以根据情况取用不同的R,也就是不同的用于强度设计的地震作用。当R取值较大,即用于设计的地震作用较小时,对结构的延性要求就越严;反之,当R取值较小,即用于设计的地震作用较大时,对结构的延性要求就可放松。

目前,国际上逐步形成了一套“多层次,多水准性态控制目标”的抗震理念。这一理念主要含义为:工程师应该选择合适的形态水准和地震荷载进行结构设计。建筑物的性态是由结构的性态,非结构构件和体系的性态以及建筑物内容物性态的组合。目前性态水准一般分为:损伤出现(damageonset)、正常运作(operational)、能继续居住(countinuedoccupancy)、可修复的(repairable)、生命安全(lifesafe)、倒塌(collapse)。性态目标指建筑物在一定程度的地震作用下对所期望的性态水准的表述。对建筑抗震设计应采用多重性态目标,比如美国的“面向2000基于性态工程的框架方案”曾对一般结构、必要结构、对安全起控制作用的结构分别建议了相应的性态目标――基本目标(常遇地震下完全正常运作,少遇地震下正常运作,罕遇地震下保证生命安全,极罕遇地震下接近倒塌)、必要目标(少于地震下完全正常运作,罕遇地震下正常运作,极罕遇地震下保证生命安全)、对安全其控制作用的目标(罕遇地震下完全正常运作,极罕遇地震下正常运作)。对重要性不同的建筑,如协助进行灾害恢复行动的医院等建筑,应该按较高的性态目标设计,此外,也可以针对甲方对建筑提出的不同抗震要求,选择不同的性态目标。

三。保证结构延性能力的抗震措施

合理选择了结构的屈服水准和延性要求后,就需要通过抗震措施来保证结构确实具有所需的延性能力,从而保证结构在中震、大震下实现抗震设防目标。系统的抗震措施包括以下几个方面内容:

1.“强柱弱梁”:人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大;而柱端塑性铰出现较晚,在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。

2.“强剪弱弯”:剪切破坏基本上没有延性,一旦某部位发生剪切破坏,该部位就将彻底退出结构抗震能力,对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值,使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。

3.抗震构造措施:通过抗震构造措施来保证形成塑性铰的部位具有足够的塑性变形能力和塑性耗能能力,同时保证结构的整体性。

这一系统的抗震措施理念已被世界各国所接受,但是对于耗能机构却出现了以新西兰和美国为代表的两种不完全相同的思路。首先,这两种思路都是以优先引导梁端出塑性铰为前提。

新西兰的抗震研究者认为耗能机构宜采用符合塑性力学中的“理想梁铰机构”,即梁端全部形成塑性铰,同时底层柱底也都形成塑性铰的“全结构塑性机构”。其具体做法是通过结构分析得到各构件组合内力值后,对梁端截面就按组合弯矩进行截面设计;而对除底层柱底以外的柱截面,则用人为增大了以后的组合弯矩和组合轴力进行设计;对底层柱底截面则用增大幅度较小的组合弯矩和组合轴力进行截面设计。通过这一做法实现在大震下的较大塑性变形中,梁端塑性铰形成的较为普遍,底层柱底塑性铰出现迟于梁端塑性铰,而其余所有的柱截面不出现塑性铰,最终形成“理想梁铰机构”。为此,这种方法就必须取足够大的柱端弯矩增强系数。

美国抗震界则认为新西兰取的柱弯矩增强系数过大,根据经验取了较小的柱弯矩增强系数,这一做法使结构在大震引起的非弹性变形过程中,梁端塑性铰形成较早,柱端塑性铰形成的相对较迟,梁端塑性铰形成的较普遍,柱端塑性铰形成的相对少一些,从而形成“梁柱塑性铰机构”。

新西兰抗震措施的好处在于“理想梁铰机构”完全利用了延性和塑性耗能能力较好的梁端塑性铰来实现框架延性和耗散地震能量,同时因为除底层柱底外的其它柱端不出现塑性铰,也就不必再对这些柱端加更多的箍筋。但是这种思路过于受塑性力学形成理想机构概念的制约,总认为底层柱底应该形成塑性铰,这样就对底层柱底提出了较严格的轴压比要求,同时还要用足够多的箍筋来使柱底截面具有所需的延性,此外,底层柱底如果延性不够发生破坏很容易导致结构整体倒塌。这些不利因素使该方法丧失了很大的优势。

因此很多研究者认为不需要被塑性力学的机构概念所限制,只要能在大震下实现以下的塑性耗能机构,就能保证抗震设计的基本要求:

1.以梁端塑性铰耗能为主;

2.不限制柱端塑性铰出现(包括底层柱底),但是通过适当增强柱端抗弯能力的方法使它在大震下的塑性转动离其塑性转动能力有足够裕量;

3.同层各柱上下端不同时处于塑性变形状态。

我国的抗震措施中对耗能机构的考虑也基本遵循了这一思路,采用了“梁柱塑性铰机构”模式,而放弃了新西兰的基于塑性力学的“理想梁铰机构”模式。

抗震设计中我们为了避免没有延性的剪切破坏的发生,采取了“强剪弱弯”的措施来处理构件受弯能力与受剪能力的关系问题。值得注意的是,与非抗震抗剪破坏相比,地震作用下的剪切破坏是不同的。以梁构件为例,在较大地震作用下,梁端形成交叉斜裂缝区,该区混凝土受斜裂缝分割,形成若干个菱形块体,而且破碎会随着延性增长而加剧。由于交叉斜裂缝与塑性铰区基本重合,垂直和斜裂缝宽度都会随延性而增大。抗震下根据梁端的受力特征,正剪力总是大于负剪力,正剪力作用下的剪压区一般位于梁下部,但由于地震的往复作用,梁底的混凝土保护层可能已经剥落,从而削弱了混凝土剪压区的抗剪能力;交叉斜裂缝宽度比非抗震情况大,以及斜裂缝反复开闭,混凝土破碎更严重,从而使斜裂缝界面中的骨料咬合效应退化;混凝土保护层剥落和裂缝的加宽又会使纵筋的销栓作用有一定退化。可见,地震作用下,混凝土抗剪能力严重退化,但是试验发现箍筋的抗剪能力仍可以维持。当地震作用越来越小时,梁端可能不出现双向斜裂缝,而出现单向斜裂缝,裂缝宽度发育也从大于非抗震情况到接近非抗震情况,抗剪环境越来越有利。此外,抗震抗剪要求结构构件应在大震下预计达到的非弹性变形状态之前不发生剪切破坏。因为框架剪切破坏总是发生在梁端塑性铰区,这就不仅要求在梁端形成塑性铰前不发生剪切破坏,而且抗剪能力还要维持到塑性铰的塑性转动达到大震所要求的程度,这就需要更多的箍筋。同时,在梁端塑性变形过程中作用剪力并没有明显增大,也进一步说明这里增加的箍筋不是用来增大抗剪强度,而是为了提高构件在发生剪切破坏时所达的延性。

综上所述,与非抗震抗剪相比,抗震抗剪性能是不同的,其性能与剪力作用环境,塑性区延性要求大小有关。我们可以采取以下公式来考虑抗震抗剪的强度公式:

其中为混凝土抗剪能力,为箍筋抗剪能力,为由于地震作用导致的混凝土抗剪能力下降的折减系数,且随着剪力作用环境、延性要求而改变。我国的抗震抗剪强度公式也以上面公式为基础的,但是为设计方便,不同的烈度区取用了相同的公式,均取为0.6,与上面提到的混凝土抗剪能力随地震作用变化而不同的规律不一致,较为粗略。

延性对抗震来说是极其重要的一个性质,我们要想通过抗震措施来保证结构的延性,那么就必须清楚影响延性的因素。对于梁柱等构件,延性的影响因素最终可归纳为最根本的两点:混凝土极限压应变,破坏时的受压区高度。影响延性的其他因素实质都是这两个根本因素的延伸。如受拉钢筋配筋率越大,混凝土受压区高度就越大,延性越差;受压钢筋越多,混凝土受压区高度越小,延性越好;混凝土强度越高,受压区高度越低,延性越好(但如果混凝土强度过高可能会减小混凝土极限压应变从而降低延性);对柱子这类偏压构件,轴压力的存在会增大混凝土受压区高度,减小延性;箍筋可以提高混凝土极限压应变,从而提高延性,但对于高强度混凝土,受压时,其横向变形系数较一般混凝土明显偏小,箍筋的约束作用不能充分发挥,所以对于高强度混凝土,不适于用加箍筋的方法来改善其延性。此外,箍筋还有约束纵向钢筋,避免其发生局部压屈失稳,提高构件抗剪能力的作用,因此箍筋对提高结构抗震性能具有相当重要的作用。根据以上规律,在抗震设计中为保证结构的延性,常常采用以下措施:控制受拉钢筋配筋率,保证一定数量受压钢筋,通过加箍筋保证纵筋不局部压屈失稳以及约束受压混凝土,对柱子限制轴压比等。

四。我国抗震设计思路中的部分不足

我国在学习借鉴世界其他国家抗震研究成果的基础上,逐渐形成了自己的一套较为先进的抗震设计思路。其中大部分内容都符合现代抗震设计理念,但是也有许多考虑欠妥的地方,需要我们今后加以完善。

其中,最值得我们注意的是,与国外规范相比,我国抗震规范在对关系的认识上还存在一定的差距。欧洲和新西兰规范按地震作用降低系数(“中震”的地面运动加速度与“小震”的地面运动加速度之比)来划分延性等级,“小震”取值越高,延性要求越低,“小震”取值越低,延性要求越高。美国UBC规范按同样原则来划分延性等级,但在高烈度区推荐使用高延性等级,在低烈度区推荐使用低延性等级。这几种抗震思路都是符合规律的。而目前我国将地震作用降低系数统一取为2.86,而且还把用于结构截面承载能力设计和变形验算的小震赋予一个固定的统计意义。对延性要求则并未按关系来取对应的,而是按抗震等级来划分,抗震等级实质又主要是由烈度分区来决定的。这就导致同一个R对应了不同的,从而制定了不同的抗震措施,这与关系是不一致的。这种思路造成低烈度区的结构延性要求可能偏低的结果。

另外,我国规定的“小震不坏,中震可修,大震不倒”的三水准抗震设防目标也存在一定的问题。该设防目标对甲类、乙类、丙类这三类重要性不同的建筑来说,并不都是恰当的。这种笼统的设防目标也不符合当今国际上的“多层次,多水准性态控制目标”思想,这种多性态目标思想提倡在建筑抗震设计中应灵活采用多重性态目标。甲类建筑指重大建筑工程和地震时可能发生严重此生灾害的建筑,乙类建筑指地震时使用不能中断或需要尽快修复的建筑,由于不同类别建筑的不同重要性,不宜再笼统的使用以上同一个性态目标(设防目标),此外,还应该考虑建筑所有者的不同要求,选择不同的设防目标,从而做到在性态目标的选择上更加灵活。

五。常用抗震分析方法

伴随着抗震理论的发展,各种抗震分析方法也不断出现在研究和设计领域。

在结构设计中,我们需要确定用来进行内力组合及截面设计的地震作用值。通常采用底部剪力法,振型分解反应谱法,弹性时程分析方法来计算该地震作用值,这三种方法都是弹性分析方法。其中,底部剪力法最简便,适用于质量、刚度沿高度分布较均匀的结构。它的大致思路是通过估计结构的第一振型周期来确定地震影响系数,再结合结构的重力荷载来确定总的水平地震作用,然后按一定方式分配至各层进行结构设计。对较复杂的结构体系则宜采用振型分解反应谱法进行抗震计算,它的思路是根据振型叠加原理,将多自由度体系化为一系列单自由度体系的叠加,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。而对于特别不规则和特别重要的结构,常常需要进行弹性时程分析,该方法为直接动力分析方法。以上方法主要针对结构在地震作用下的弹性阶段,保证结构具有一定的屈服水准。

抗震设防论文 篇2

论文关键词:高层概况发展体系施工

论文摘要:本文简要介绍了高层、超高层建筑的结构体系,通过对国内已建和在建的高层建筑钢结构国产化问题的调研,分析了在钢材、设计、施工和监理等方面国产化所面临的主要问题,为高层建筑钢结构的发展提出了一些建议。

高层钢结构建筑在国外已有110多年的历史,1883年最早一幢钢结构高层建筑在美国芝加哥拔地而起,到了二次世界大战后由于地价的上涨和人口的迅速增长,以及对高层及超高层建筑的结构体系的研究日趋完善、计算技术的发展和施工技术水平的不断提高,使高层和超高层建筑迅猛发展。钢筋混凝土结构在超高层建筑中由于自重大,柱子所占的建筑面积比率越来越大,在超高层建筑中采用钢筋混凝土结构受到质疑;同时高强度钢材应运而生,在超高层建筑中采用部分钢结构或全钢结构的理论研究与设计建造可说是同步前进。

超高层建筑的发展体现了发达国家的建筑科技水平、材料工业水平和综合技术水平,也是建设部门财力雄厚的象征。来源于/

一、我国的高层与超高层钢结构建筑的发展

我国的高层与超高层钢结构建筑自改革开放以来已有20年的历史,并在设计和施工中积累了不少经验,已有我国自行编制的《高层民用建筑钢结构技术规程》。

1、钢材的国产化

国内钢铁企业根据我国高层建筑钢结构设计标准的要求,制订我国第一部高层建筑钢结构的钢材标准《高层建筑结构用钢板》(YB4104-2000),比目前仍在实施的《低合金高强度结构钢》(GB/T1591-94)又前进了一步,其性能指标优于国外同类产品。

2、钢结构设计国产化

截止2003年3月,我国已建和在建的高层建筑钢结构有60余幢,按其结构类型划分,钢框架-RC核心筒占4314%,SRC框架-RC核心筒占1617%,二者合计6011%;钢框架-支撑体系占1813%;巨型框架占813%;纯钢框架占617%,筒体和钢管混凝土结构各占313%。统计表明,目前我国高层建筑钢结构以混合结构为主。

鉴于我国对混合结构尚未进行系统的研究,所以《建筑抗震设计规范》(GB50011-2001)暂不列入这种结构类型是合理的。

国家标准《高层民用建筑钢结构技术规程》(JGJ99-98)和《建筑抗震设计规范》(GB50011-2001)等有关高层建筑最大高度和最大高宽比的规定,在一般情况下,应遵守规范的规定,否则应进行专项论证或试验研究。建设部第111号令《超限高层建筑工程抗震设防管理规定》和建质[2003]46号文《超限高层建筑工程抗震设防专项审查技术要点》,对加强高层建筑钢结构设计质量控制意义重大,具有可操作性。

钢结构设计分两个阶段,即设计图阶段和施工详图阶段。现在有的设计院完全采取国外设计模式,无构件图、节点图和钢材表等,对工程招投标和施工详图设计带来不便。因此,建议有关部门对此做出具体规定。关于节点设计问题,国内应多做一些理论和试验研究工作,比如柱梁刚性节点塑性铰外移和防止焊接节点的层状撕裂等。由于钢结构的阻尼比较低,在研发各种耗能支撑和节点的减震消能体系方面,国际上研究和应用较多,国内应加快进行此方面的研究。

二、高层及超高层结构体系

对于高层及超高层建筑的划分,建筑设计规范、建筑抗震设计规范、建筑防火设计规范没有一个统一规定,一般认为建筑总高度超过24m为高层建筑,建筑总高度超过60m为超高层建筑。

对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架—剪力墙结构体系、框—筒结构体系、筒中筒结构体系、束筒结构体系。

三、钢结构制作与安装1、钢柱的安装

钢柱是高层、超高层建筑决定层高和建筑总高度的主要竖向构件,在加工制造中必须满足现行规范的验收标准。

100m高的超高层钢柱一般分为8~12节构件,钢柱在翻样下料制作过程中应考虑焊缝的收缩变形和竖向荷载作用下引起的压缩变形,所以钢柱的翻样下料长度不等于设计长度,即使只有几毫米也不能忽略不计。而且上下两节钢柱截面完全相等时也不允许互换,要求对每节钢柱应编号予以区别,正确安装就位。

矩形或方形钢柱内的加劲板的焊接应按现行规范要求采用熔嘴电渣焊,不允许采用其他如在箱板上开孔、槽塞焊等形式。

钢柱标高的控制一般有二种方式:

(1)按相对标高制作安装。钢柱的长度误差不得超过3mm,不考虑焊缝收缩变形和竖向荷载引起的压缩变形,建筑物的总高度只要达到各节柱子制作允许偏差总和及钢柱压缩变形总和就算合格,这种制作安装一般在12层以下,层高控制不十分严格的建筑物。

(2)按设计标高制作安装。一般在12层以上,精度要求较高的层高,应按土建的标高安装第一节钢柱底面标高,每节钢柱的累加尺寸总和应符合设计要求的总尺寸。每一节柱子的接头产生的收缩变形和竖向荷载作用下引起的压缩变形应加到每节钢柱加工长度中去。

2、框架梁的制作与安装

高层、超高层框架梁一般采用H型钢,框架梁与钢柱宜采用刚性连接,钢柱为贯通型,在框架梁的上下翼缘处在钢柱内设置横向加劲肋。公务员之家

框架梁应按设计编号正确就位。

为保证框架梁与钢柱连接处的节点域有较好的延性以及连接可靠性和楼层层高的精确性,在工厂制造时,在框架梁所在位置设置悬臂梁(短牛腿),悬臂梁上下翼缘与钢柱的连接采用剖口熔透焊缝,腹板采用贴角焊缝。框架梁与钢柱的悬臂梁(短牛腿)连接,上下翼缘的连接采用衬板(兼引弧板)全熔透焊缝,腹板采用高强螺栓连接。

由于钢筋混凝土施工允许偏差远远大于钢结构的精度要求,当框架梁与钢筋混凝土剪力墙或钢筋混凝土筒壁连接时,腹板的连接板可开椭圆孔,椭圆孔的长向尺寸不得大于2d0(d0为螺栓孔径),并应保证孔边距的要求。

框架梁的翻样下料长度同样不等于设计长度,需考虑焊接收缩变形。焊接收缩变形可用经验公式计算再按实际加工之后校核,确定其翻样下料的精确长度。

框架梁上下翼缘的连接可采用高强螺栓连接或焊接连接,目前大部分采用带衬板的全熔透焊接连接。施工时先焊下翼缘再焊上翼缘,先一端点焊定位,再焊另一端。

抗震设防论文 篇3

关键词:抗震规范

1.R-μ-T关系及其应用

在二十世纪五十年代,当美国的权威人士G.W.Houser导出了第一条地震反应谱和对地震激励下的弹性反应规律的研究很快被学术界接受后,人们很快发现了一个与当时的抗震设计方法相矛盾的问题,那就是例如对一个第一振型周期为0.5s~1.5s,阻尼比为0.05的结构,结构地震反应加速度约为地面运动峰值加速度的1.5~2.5倍,比如赋予上述结构一个不大的地面运动加速度0.15g,则根据反应谱导出的结构反应加速度已达到0.23g~0.375g,而世界各国当时的设计规定中一般用来确定水平地震力大小的加速度只有0.04g~0.15g,但让人不解是,震害表明,虽然设计用的反应加速度很小,但结构在地震中的损伤却不太大。这么大的差距是不能用安全性或设计误差来解释的,于是,各国的学术界加紧了对这一问题的研究,大家通过对单自由度体系的屈服水准、自振周期(弹性)以及最大非弹性动力反应之间的关系;同时还研究了当地面运动特征(包含场地土特征)不同时,给这种关系带来的变化,我们把这方面的研究工作关系其中R是指在一个地面运动下最大弹性反应力与非弹性反应屈服力之间的比值,称为弹塑性反应地震力降低系数,简称地震力降低系数或者反应调节系数;µ为最大非弹性反应位移与屈服位移的比值,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。研究表明,对于长周期(指弹性周期且T>1.0s)的结构可以适用“等位移法则”,即弹性体系与弹塑性体系的最大位移反应总是基本相同的;而对于中周期(指弹性周期且0.12s<T<0.5s)的结构,则适用于“等能量法则”,即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。

之所以存在上诉规律,我们应该注意到钢筋混凝土结构的一些相关特性。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力不会下降的属性。这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。在非弹性变形过程中,外力做功全部变为热能,并传入空气中耗散掉。我们可以进一步以单质点体系的无阻尼振动来分析,在弹性范围振动时,惯性力与弹性恢复力总处于动态平衡状态,体系能量在动能、势能间不停转换,但总量保持不变。如果某次振动过大,体系进入屈服后状态,则体系在平衡位置的动能将在最大位移处转化为弹性势能和塑性变形能两部分,其中,塑性变性能将耗散掉,从而减小了体系总的能量。由此我们可以想到,在地震往复作用下,结构在振动过程中,如果进入屈服后状态,将通过塑性变性能耗散掉部分地震输给结构的累积能量,从而减小地震反应。同时,实际结构存在的阻尼也会进一步耗散能量,减小地震反应。此外,结构进入非弹性状态后,其侧向刚度将明显小于弹性刚度,这将导致结构瞬时刚度的下降,自振周期加长,从而减小地震作用。

2我国现行抗震设计规范中的不足之处

抗震规范规定,我国的抗震设防目标必须坚持“小震不坏,中震可修,大震不倒”的原则,而建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定;抗震措施,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,抗震措施,一般情况下,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。丙类建筑应属于甲、乙、丁类以外的一般建筑,地震作用和抗震措施应符合本地区抗震设防烈度的要求。我们知道,一栋建筑在大震下能否不倒,已经不是看其承载力的大了了,而是看它的延性是否能够到达设计要求。由上面的建筑物抗震类别划分可以看出,我们对甲、乙、丙、丁建筑物延性的要求是依次从高到低的,此时,结构的延性实际上是由其抗震措施来决定的,现以一栋乙类建筑和丙类建筑为例:

表1

设防烈度

抗震措施烈度

实际延性

6

7(6)

7

8(7)

中等

8

9(8)

稍高

9

比9度高(9)

说明:在抗震措施烈度中,括号外为乙类建筑,括号内的为丙类建筑。

由表1可以看出,如果按规范设计,就可能会出现9度(设防烈度)下的丙类建筑的延性比7度(设防烈度)下的乙类建筑延性还要高的情况出现,而根据上面所述的R-μ-T理论关系的研究可以知道,当R取值不变时,对结构的延性要求也应该是不变的,与处在什么烈度区没有关系,如果R-μ-T理论关系的研究结果是正确的,那么我国规范对甲、乙、丙三类建筑的要求就存在概念性矛盾。

我国取R=3.33,与国外规范相比较,我们对乙类和丙类建筑的是比较合理,而对于甲类建筑则过于偏松,对丁类建筑过于严格了。

目前,国际上逐步形成了一套“多层次,多水准性态控制目标”的抗震理念。这一理念主要含义为:工程师应该选择合适的形态水准和地震荷载进行结构设计。建筑物的性态是由结构的性态,非结构构件和体系的性态以及建筑物内容物性态的组合。目前性态水准一般分为:损伤出现(damageonset)、正常运作(operational)、能继续居住(countinuedoccupancy)、可修复的(repairable)、生命安全(lifesafe)、倒塌(collapse)。性态目标指建筑物在一定程度的地震作用下对所期望的性态水准的表述。对建筑抗震设计应采用多重性态目标,比如美国的“面向2000基于性态工程的框架方案”曾对一般结构、必要结构、对安全起控制作用的结构分别建议了相应的性态目标―基本目标(常遇地震下完全正常运作,少遇地震下正常运作,罕遇地震下保证生命安全,极罕遇地震下接近倒塌,相当与中国的丙类建筑)、必要目标(少于地震下完全正常运作,罕遇地震下正常运作,极罕遇地震下保证生命安全,相当与中国的乙类建筑)、对安全其控制作用的目标(罕遇地震下完全正常运作,极罕遇地震下正常运作,相当与中国的甲类建筑),目前中国正在进行用地震动参数区划分图代替基本烈度区画图的工作。对重要性不同的建筑,如协助进行灾害恢复行动的医院等建筑,应该按较高的性态目标设计。此外,也可以针对业主对建筑提出的不同抗震要求

2.钢筋混凝土结构的核心抗震措施

我国抗震设计对钢筋混凝土结构提出的基本上是“高延性要求”,也就是要求结构在较大的屈服后塑性变形状态下仍保持其竖向荷载和抗水平力的能力,对于有较高延性要求的钢筋混凝土结构必须使用能力设计法进行有关设计。“能力设计法”的要求是在设计地震力取值偏低的情况下,结构具有足够的延性能力,具体做法是通过合理设计使柱端抗弯能力大于梁端从而使结构在地震作用下形成“梁铰机构”,即塑性变形或塑性铰出现在比较容易保证具有较大延性能力的梁端;通过相应提高构件端部和节点的抗剪能力以避免构件发生非延性的剪切破坏。其核心是:

(1)“强柱弱梁”措施:主要是通过人为增大相对于梁的抗弯能力,使塑性铰更多的出现在柱端而不是梁端,让结构在地震引起的动力反应中形成“梁铰机构”或“梁柱铰机构”,通过框架梁的塑性变形来耗散地震能量。

“强柱弱梁”措施是“能力设计法”的最主要的内容。

根据对构件在强震下非线线动力分析可知,强震下,由于构件产生塑性变形,因此可以耗散部分地震能量,同时根据杆系结构塑性力学的分析知道,在保证结构不形成机构的要求下,“梁铰机构”或“梁柱铰机构”相对与“柱铰机构”而言,能够形成更多的塑性铰,从而能耗散更多的地震能量,因此我们需要加强柱的抗弯能力,引导结构在强震下形成更优、更合理的“梁铰机构”或“梁柱铰机构”。

这一套抗震措施理念已被世界各国所接受,但是对于耗能机构却出现了以新西兰和美国为代表的两种不完全相同的思路。这两种思路都承认应该优先引导梁端出塑性铰,但是双方对柱端塑性铰出现的位置和数量有分歧。

新西兰追求理想的梁铰机构,规范中底层柱的弯距增大系数比其它柱的弯距增大系数要小一些,这么做的目的是希望在强震下,梁端塑性铰形成较为普遍,底层柱塑性铰的出现比梁端塑性铰迟,而其余所有的柱截面在大震下不出现塑性铰的“梁铰机构”。但是新西兰人也不认为他们的理想梁铰方案是唯一可用的方法,因此他们在规范中规定可以选用两种方法,一种是上述的理想梁铰机构法,另一种就是类似与美国的方法。

美国规范的做法则希望在强震下塑性铰出现较早,柱端塑性铰形成较迟,梁端塑性铰形成得较普遍,柱端塑性铰可能要形成得要少一些的“梁-柱塑性铰机构”(柱端塑性铰可以在任何位置形成,这一点是与新西兰规范的做法是不同的)。中国规范和欧洲EC8规范也是采用与美国类似的方法。

(2)“强剪弱弯”措施:用剪力增大系数增大梁端,柱端,剪力墙端,剪力墙洞口连梁端以及梁柱节点中的组合剪力值,并用增大后的剪力设计值进行受剪截面控制条件验算和受剪承载力设计,以避免在结构出现脆性的剪切破坏。

我们在上学期学过,钢筋混凝土的抗剪能力由混凝土自身的抗剪能力、裂缝界面的骨料咬合力、纵筋销栓力和箍筋的拉力4部分构成,而通过对框架梁在强震下的抗剪分析可知,混凝土的梁端抗剪能力在形成塑性铰后会比非抗震时有所下降,主要原因有几下几个:

1由结构力学和材料力学的分析可知,梁端总是正剪力大于负剪力,如果发生剪切破坏时,剪压区一般都在梁的下部,而此时混凝土保护层已经剥落,且梁下端又没有现浇板,所以混凝土剪压区的抗剪能力会比非抗震时偏低

2由于在强震下剪切破坏要发生在塑性铰充分转动的情况下,而非抗震时的剪切破坏往往发生在纵筋屈服之前,因此在抗震条件下混凝土的交叉裂缝宽度会比非抗震情况偏大,从而使斜裂缝界面中的骨料咬合效应慢慢退化,加之斜裂缝反复开闭,混凝土体破坏更严重,这使得混凝土的抗剪能力进一步被削弱。

3混凝土保护层的剥落和裂缝的加宽又会使纵筋的抗剪销栓作用有所退化。

我们一般在计算钢筋混凝土的抗剪能力时,只计算了混凝土自身的抗剪能力和箍筋的抗剪能力(V=Vc+Vsv),而把斜裂缝界面中的骨料咬合能力及纵筋的销栓作用作为它多余的强度储备。在抗震下梁端的塑性铰的形成,使得骨料咬合力及纵筋的销栓作用有所下降,钢筋混凝土的抗剪强度储备也会下降,同时由于混凝土的抗剪能力(Vc)的下降,V也会比非抗震时小,如果咬使V不变,那么就只有使Vsv变大,即增加箍筋用量,所以我们可以得出这样的结论,在抗震情况下箍筋用量比非抗震时要大一些,这不是因为地震使梁的剪力变大了而增加箍筋用量,而是由于混凝土项的抗剪能力下降,相应的必须加大箍筋用量。其他构件的原理也相似。

(3)抗震构造措施:通过相应构造措施保证可能出现塑性铰的部位具有所需足够的延性,具体来说就是塑性转动能力和塑性耗能能力。

对于梁柱等构件,延性的影响因素最终可归纳为最根本的两点:混凝土极限压应变,破坏时的受压区高度。影响延性的其他因素实质都是这两个根本因素的延伸。

对于梁而言,无论是对不允许柱出现塑性铰(底层柱除外)的新西兰方案,还是允许柱出现塑性铰但控制其出现时间和程度的方案,梁端始终都是引导出现塑性铰的主要部位,所以都希望梁端的塑性变形有良好的延性(即不丧失基本抗弯能力前提下的塑性变形转动能力)和良好的塑性耗能能力。因此除计算上满足一定的要求外,还要通过的一系列严格的构造措施来满足梁的这种延性,如:

1控制受拉钢筋的配筋率。配筋率包括最大配筋率和最小配筋率,前者是为了使受拉钢筋屈服时的混凝土受压区压应变与梁最终破坏时的极限压应变还有一定的差距(梁的最终破坏一般都以受压区混凝土达到极限压应变,混凝土被压碎为标志的);后者是保证梁不会在混凝土受拉区刚开裂时钢筋就屈服甚至被拉断。

2保证梁有一定的受压钢筋。受压钢筋可以分担部分剪力,减小受压区高度,另外在大震下,梁端可能出现正弯距,下部钢筋有可能受拉,。

3保证箍筋用量,用法。箍筋的作用有三个,一是抗剪,这在前文已经说过,这里不再充分;二是规定箍筋的最小直径,保证纵筋在受压下不会过早的局部失稳;三是通过箍筋约束受压混凝土,提高其极限压应变和抗压强度。

4对截面尺寸有一定的要求。规范规定框架梁截面尺寸宜符合下列要求:1>截面宽度不宜小于200mm;2>截面高度与宽度的比值不宜大于4;3>净跨与截面高度的比值不宜大于4。在施工中,如梁宽度太小,而梁上部钢筋一般都比较多,会使混凝土的浇注比较困难,容易造成混凝土缺陷;在震害和试验中多次发生过腹板较薄的梁侧向失稳的事例,因此提出要求了2;一般我们把跨高比小于5的梁称为深梁,深梁的抗弯和抗剪机理与一般的梁(跨高比大于5的梁)有所不同,所以我们在设计中最好能避免设计成深梁,如果实在不能避免,就要去看专门的设计方法和规造措施。

柱的构造措施也和梁差不多,但是柱除了受弯距和剪力以外,还要承受轴力(梁的轴力一般都很小,在设计中都不予以考虑),尤其是高层建筑,轴力就更大了,所以柱还有对轴压比的限制,其中对不同烈度下有着不同延性要求的结构有着不同的轴压比限值;另外,柱端箍筋用量的控制条件不是简单的用体积配箍率,而是用配箍特征值,它同时考虑了箍筋强度等级和混凝土强度等级对配箍量的影响。

高强度混凝土(C60以上)的极限压应变都比一般混凝土(C60及其以下)要小一些,而且强度越高,小的越多;另外,强度越高,混凝土破坏时脆性特征越明显,这些对于抗震来说是不利的。

3.常用的抗震分析方法

结构抗震设计的首要任务就是是对结构最大地震反应的分析,以下是一些常用的抗震分析方法:

1.底部剪力法

底部剪力法实际上时振型分解反应谱法的一种简化方法。它适用于高度不超过40m,结构以剪切变形为主且质量和刚度沿高度分布比较均匀的框架结构,此时假设结构的地震反应将以第一振型为主且结构的第一振型为线性倒三角形,通过这两个假设,我们可近似的算出每个平面框架各层的地震水平力之和,即“底部剪力”,此方法简单,可以采用手算的方式进行,但精确度不高。

2.振型分解反应谱法

振型分解反应谱法的理论基础是地震反应分析的振型分解法及地震反应谱概念,它的思路是根据振型叠加原理,将多自由度体系化为一系列单自由度体系的叠加,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。此法计算精度高,但计算量大,必须通过计算机来计算。

3.弹性时程分析

弹性时程分析法,也称为弹性动力反应分析。所谓时程分析法就是将建筑物作为弹性或弹塑性振动系统,直接输入地面地震加速度记录,对运动方程直接积分,从而获得计算系统各质点的位移,速度,加速度和结构构件地震剪力的时程变化曲线。而弹性时程分析法就是把建筑物看成是弹性振动系统。

4.非线(弹)性时程分析

非弹性时程分析法,也称为非线性动力反应分析。就是将建筑物作为弹塑性振动系统来输入地面地震加速度记录。上面所提到的基于地震反应谱进行设计的方法,可以求出多遇地震作用下结构的弹性内力和变形,同样可以求得罕遇地震作用下结构的弹塑性变形。但是它不能确切了解建筑物在地震过程中结构的内力与位移随时间的反应;同时也难以确定建筑结构在地震时可能存在的薄弱环节和可能发生的震害;由于计算简化,抗震承载力和变形的安全度也可能是有疑问的。而时程分析法就可以准确而完整的反映结构在强烈地震作用下反应的全过程状况。所以,它是改善结构抗震能力和提高抗震设计水平的一项重要措施。

建筑结构抗震论文 篇4

关键词: 建筑;结构设计;抗震;设计;策略

中图分类号:TU318文献标识码: A 文章编号:

近几年来,全球性的地震灾害的频发,给我们的人类,带来了更加深重的灾难。从汶川地震、舟曲地震,在到雅安地震,这些灾难,带给了我们无尽的伤痛,房毁人亡,建筑损坏等的发生,使得人们更加注重起了灾后依然屹立不倒的建筑,这些建筑,在灾难来临时,无疑可以为人们提供一个避风港,在一定程度上减少了人员的伤亡。为了提高建筑的抗震性能,本文对建筑结构设计中的抗震问题,进行了分析。

一、建筑抗震结构设计的基本原则

一是在最大限度上安排多道抗震防线。由于多个延性相对较好的分体系会构成一个抗震结构体系,通过有一定延性的结构构件共同协作。比合如延性框架以及剪力墙构成了框架-剪力墙结构。在经过了级数较大的地震之后,往往随之而来是多次的余震。如果只设计了一道防线,则余震带来的破坏在很大程度上会给已经受过损伤的建筑物带来致命的一击,而造成倒塌。为了防止大地震时发生倒塌,需要在抗震结构体系中设计较大的内部、外部冗余度。所运用的耗能构件需要满足较好的延性和适当的刚度,这样才能在很大程度上提高结构的抗震性能。

二是采取相应的措施在可能出现的薄弱部位加强其抗震能力。

判断薄弱部位的基本因素是构件的实际承载能力,发生强烈地震的过程中,构件没有所谓的强度安全储备。在设计过程中,需要实现楼层(部位)的实际承载能力和设计计算的弹性受力的比值处于相对均匀的变化趋势。且不能过分重视局部的刚度和承载力而忽视了整体的协调程度。对于从总体上加强抗震性能的手段,效果较为显著的手段是重视薄弱层的设计,能够具备充足的变形能力而不会发生薄弱层转移的情况。

二、建筑结构设计的抗震设计策略

1、建筑抗震场地的选择

(1)房屋平面布置应当规则,在结构上应当力求对称。如果房屋在建筑过程中,其外形不规则,或者是不对称,带有凹凸变化尺度,或者是形心质心偏大,在同一个结构的单元内部,结构的平面形状以及刚度不均匀或是不对称的情况下,平面的长度过长等现象,对于抗震性能均不利。

(2)强度以及刚度都要匀称。在多层的建筑结构当中,应该使各个层面之间的强度和具备的刚度都要匀称,无论哪一层,如果存在薄弱的一个楼层,那么这一处,就会在地震力的强大作用下导致变形或成为变形集中区,从而使得建筑物最初开始从此部位发生严重的变形导致破坏,最后甚至波及到整个建筑的整体遭到严重破坏。

(3)结构的超静定次数多。静定结构的杆件,其受力系统和传力路线单一,其中一根杆件遭到破坏,就会波及整个结构体系由此而导致失效。在超静定的结构中,超过其荷载能力的时候,会先使一些多余的杆件发生一些塑性的变形,并且容易消耗吸收一部分的能量,而保证整个的结构所具备的稳定性,并且还可以减少地震的破坏。超静定结构次数多,那么消耗地震能量,也就越多,同时建筑的抗震能量也就越强。

2、建筑结构抗震体系的合理选择

建筑结构中的抗震体系的合理选择,是在建筑结构抗震结构的设计当中,应当慎重考虑的一个重要性的问题,其中建筑结构的抗震方案的选取是否合理,这是决定建筑结构的安全性以及经济性的一个重要的组成部分。

(1)首先建筑结构体系,在地震的灾害中,应当避免因为部分结构或者是构件的破坏,从而导致的整个建筑结构丧失了抗震能力,或者是对重力荷载的承载能力。建筑结构抗震设计所具备的一个重要的设计原则就是,建筑结构本身应当具有十分必要的赘余度、以及良好的变形能力,和其具备的内力重分配的功能,在地震的过程当中,即使是有一部分的构件退出了工作,但是其余部分构件,应该仍然能够承担起竖向的荷载能力,且还要避免整体的建筑结构失稳。

(2)建筑结构体系当中,其应当具备清晰而且明确的计算的简图,包括恰当而且合理的地震作用下的传递的路径。在抗震设计过程当中,竖向建筑构件的布置设计,就应当尽量使得竖向建筑构件,在垂直的重力荷载的作用下,压应力水平应当接近均匀;且其中的楼屋盖梁体系的布置,也应当尽量的使用垂直重力荷载,主要目的是以最短的路径来传递到竖向构件墙和柱的上面去;

(3)建筑结构体系应当具有合理适度的强度和刚度。应当具有合理而且恰当的强度以及刚度分布,这是因为在抗震过程中,为了防止以及避免因为局部的削弱或者是突然的变形而形成薄弱的部位,并且对薄弱的部位产生过大的塑性变形集中或者是应力集中的现象;建筑的框架结构设计,应当使节点基本不遭到破坏,同时底层柱底的塑性铰应当形成的晚些,应当使柱、梁端的塑性铰出现得尽可能地分散;这对于震中可能出现的薄弱部位,应当及时采取适当的措施来提高抗震的能力。

3、重视建筑结构平面布置的规则性和对称性

建筑的平、立面布置应符合抗震理念设计原则,宜采用规则的建筑结构设计方案,不应采用十分不规则的设计方案。建筑结构抗震设计规范规定,对平面不规则或竖向不规则,或平面、竖向都不规则的建筑结构,应采用空间结构计算模型;对凹凸不规则或楼板局部不连贯时,应采用符合楼板平面内的实际刚度强度变化的计算模型;对薄弱部位应乘以内力增大系数,应按规范的有关规定分析弹塑性变形,并应对薄弱部位采取强有效的抗震构造措施。

4、提高建筑结构抗震能力的对策

(1)要合理且恰当地布局地震外力的能量传递与吸收的途径,在地震当中,要确保建筑的支柱、梁与墙的轴线,处于同一个平面上,从而可以形成构件的双向抗侧力结构体系。并且可以使其在地震的作用下,呈现弯剪性的破坏,并使塑性屈服情况,尽量的发生在墙的根底部,从而连梁适合在梁端产生塑性屈服,这样还具有足够的变形的能力。在震灾中,在墙段部分充分发挥抗震功能之前,要按照"强墙弱梁"的原则,来大力加强墙肢的承载力,避免墙肢遭到剪切性的破坏现象,从而最大限度的提高建筑结构的整体的抗震能力。

(2)要根据抗震等级,在对墙、柱以及梁节点设计中,采取相对应的抗震构造措施,力求确保建筑物结构,在地震的作用下可以达到三个水准的设防标准。还可以根据"强柱弱梁"、和"强剪弱弯" 、以及"强节点弱构件"几种构造的原则,在建筑设计中,合理的选择柱截面的尺寸,以此控制柱的轴压比,并还要注意构造配筋的要求,还要保证,钢筋砼结构建筑在地震的作用下,能够具有足够的承载能力以及具备足够的延性。

(3)在建筑设计过程中,要设置出多道抗震的防线,即,在设计一个抗震结构的体系当中,有一部分延性比较好的构件,在地震的作用下,首先可以担负起第一道抗震防线的作用,然事,其他的构件,在第一道抗震防线屈服以后,在地震中,会依次的形成第二道、第三道或者是更多道的抗震的防线,这样的抗震结构体系的设计,在建筑设计当中,对于确保建筑结构具有的抗震安全性,是非常的行之有效的设计方法和手段。

总之,建筑行业关系到我国的经济发展和社会稳定,关系到国民的生命财产安全,加强对建筑结构的防震设计,提高抗震能力,是促进社会和谐稳定的客观要求。因此实施科学合理的设计方法,选择科学的抗震措施,重视抗震关键要点,具有重大的社会意义。

参考文献

[1] 瞿岳前 杨将 汤卫华 建筑结构基于性能的抗震设计理论与方法 [期刊论文] 《山西建筑》 -2009年35期

[2] 黄鹤 王佳蕾 建筑结构基于性能的抗震设计理论及方法 [期刊论文] 《中国高新技术企业》 -2012年2期

建筑结构抗震论文 篇5

不确定性的地面运动的影响。地震动是地壳快速释放能量过程中产生具有不确定性的多维振动,它是通过地震波的传播实现的,它的随机性和复杂性让人难以预测。地震动的各个分量对建筑都具有危害作用,即一个竖向分量、两个水平分量和一个转动分量。地震灾害具有突发性、破坏性、难以预测性,甚至是毁灭性的。结构动力特性的影响。影响结构动力分析的因素主要有:结构质量分布不均匀;基础与上部结构的协同作用;节点的非刚性转动;偏心扭转可能使位移增加;柱的轴向变形可能会使周期变长,加速度降低;材料的影响。混凝土的弹性模量随着时间的增长或应变的增大而降低,这意味着自振周期可能增长,而加速度反应将减小。阻尼变化的影响。钢筋混凝土结构阻尼比受震松动以后会变大,且自振周期变长。基础不同沉降量的影响。按一般荷载设计的框架结构,当地震系数大于0,基础差异沉降可能造成实际弯矩与设计弯矩出现较大的误差,而这种误差在设计中一般未予考虑。建筑结构的施工质量。施工质量是影响结构抗震能力的一个重要因素。施工的任一环节都可能对建筑结构的抗震性能造成重要影响。这就是为什么“豆腐渣工程”的抗震性能总是和设计值相差甚远。

2.建筑结构抗震设计方法

2.1结构地震分析法

结构抗震设计的首要任务就是对结构最大地震反应的分析,需要确定内力组合及截面设计的地震作用值。常用的地震分析法有底部剪力法、弹性时程分析方法、振型分解反应谱法、非线弹性静力分析法以及非线弹性时程分析法。其中最为简单的属底部剪力法,其在质量、刚度沿高度分布较均匀的结构中较为适用。假设结构的地震反应以线性倒三角形的第一振型为主。并通过第一振型周期的估计来确定地震影响系数。对于较为复杂的结构体系,采用振型分解反应谱法来计算,它的思路就是根据振型叠加原理,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。而弹性时程分析适用于特别不规则和特别重要的结构中,将建筑物看作弹性或弹塑性振动系统,直接输入地面振动加速度记录,对运动方程积分,从而得到各质点的位移、速度、加速度和剪力时程变化曲线。非线弹性时程分析法可以准确完整的反映结构在地震作用下反应的全过程。按非线弹性时程分析法进行抗震设计,能改善结构抗震能力和提高抗震水平。非线弹性静力分析法考虑了结构弹塑性特性,在结构分析模型上施加某种特定倾向力模拟地震水平侧向力,并逐级单调增大,构件一旦屈服,修改其刚度直到结构达到预定的状态。

2.2建筑结构抗震设计方法

为了确保建筑结构的抗震能力最佳,所设计的结构在强度、刚度、延性及耗能能力等方面都达到最佳,质量分布均匀,平面对称、规则抗侧向力较好的体系及刚度与承载能力变化连续的结构体系是优先考虑的设计方案,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。

(1)根据我国的抗震设计规范,建筑持力层的选择非常重要,它关系着整个建筑物的安全性能,同时规范还指出,建筑的形体要适当,要求建筑的形状及抗侧力构件的平面布置宜规则,并有整体性,不宜用轴压比很大的钢筋混凝土框架柱作为第一道防线。

(2)抗震结构体系布置是建筑结构抗震设计的关键问题,如房屋建造中框架结构体系和砌体结构的选择问题。地震后会有余震,抗震结构体系应具有多道抗震防线。如框架结构设计中为了避免部分构件破坏而导致整个体系丧失抗震能力,将不承受重力荷载的构件用作传递途径。

(3)传统的结构抗震是通过增强结构本身的抗震性能(强度、刚度、延性)来抵御地震作用的,即由结构本身储存和消耗地震能量。消能减震设计指在结构中设置消能器来消耗地震输入的能量,减轻结构的地震反应,减小结构发生破坏和避免结构物直接倒塌以达到预期防震减震要求。隔震设计指在建筑物基础与上部结构之间设置隔离层,即安装隔震装置,通过隔震装置延长结构的基本周期,避免地震能量集中使结构发生屈服和破坏。这是一种以柔克刚积极主动的抗震对策,是一种新方法、新对策、新途径。

(4)尽可能多设置几道抗震防线,一个较好的抗震建筑结构由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。强烈地震之后往往伴随多次余震,如果只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。如像教学楼这种相对大开间、单跨、大窗口、悬臂走廊的纯框架结构,其纵、横方向的刚度不均匀,很容易发生扭转破坏,而整个结构只有框架一道防线,一旦柱子发生破坏,没有其他约束措施,整个框架因丧失全部承载能力而倒塌。防止脆性和失稳破坏,增加延展性。设计不良的细部结构常常发生脆性和失稳破坏,应该防止。刚度的选择有助于控制变形,在不增加结构的重量的基础上,改变结构刚度,提高结构的整体刚度和延展性是有效的抗震途径。

(5)场地条件就是导致建筑震害过于严重的关键因素,所以选择最为有利的地形最大限度的防止建筑物出现在不利于抗震功能发挥的区域。选择在抗震过于危险的区域来建造房屋,有可能对人们的生命财产安全带来危害。在汶川地震时,北川县城西的房屋建造在有滑坡隐患的山体之下,在地震的作用下,山体崩塌、滑坡,将大量的房屋掩埋,死亡1600人,损失惨重。

3结语

随着社会经济的发展,为满足我们的需求,越来越多的建筑物将随之出现。建筑的抗震结构体系会由原本的硬性为主转向以柔性为主,用“以柔克刚”的办法对建筑结构构件进行消能减震与隔震,从而在一定程度上减弱地震对建筑物的损坏,以此实现抗震的目的。随着建筑使用的材料的抗震性能的提高,建筑结构的抗震性能也会随之提高;建筑结构抗震设计的脚步也会随着新型材料的开发而迈向更高一层,采用层层修改,优化后的抗震方法设计来充分满足高层建筑的抗震需求。科学技术的进步带动建筑行业发展,建筑结构抗震能力也随着经验教训,科学发展,技术进步而日新月异。地震是自然灾害,很难避免,但是只要我们恰当、灵活的采用各项建筑抗震原则,就能使建筑结构更为合理,抗震能力大大提高,从而减少人民群众的生命财产损失,确保他们可以安居乐业。

Copyright © 热范文 All Rights Reserved.